Elektrokimia Bateri litium-ion

Tindak balas elektrokimia dalam bateri ion litium melibatkan tiga komponen utamanya iaitu elektrod anod dan katod serta elektrolit sebagai bahan perantara. Kedua-dua elektrod membenarkan ion litium berpindah antara satu sama lain. Semasa masukan (atau interkalasi) ion-ion bergerak ke dalam elektrod. Semasa proses lawannya, pengekstrakan (atau nyahinterkalasi), ion-ion bergerak keluar. Semasa sel berasaskan litium sedang nyahcas, ion positif diekstrak dari elektrod negatif (biasanya grafit) dan dimasukkan ke dalam elektrod positif (sebatian mengandungi litium). Semasa bateri mengecas, keadaan yang sebaliknya berlaku.

Kerja berguna terjana apabila elektron mengalir melalui litar luaran tertutup. Persamaan berikut menunjukkan satu contoh tindak balas kimia, dalam unit mol, membolehkan pemalar n {\displaystyle n} digunakan.

Tindak balas separa bagi elektrod positif ialah:[16]

L i C o O 2 ⇆ L i 1 − n C o O 2 + n L i + + n e − {\displaystyle \mathrm {LiCoO_{2}} \leftrightarrows \mathrm {Li} _{1-n}\mathrm {CoO_{2}} +n\mathrm {Li^{+}} +n\mathrm {e^{-}} }

Tindak balas separa bagi elektrod negatif ialah:

n L i + + n e − + C ⇆ L i n C {\displaystyle n\mathrm {Li^{+}} +n\mathrm {e^{-}} +\mathrm {C} \leftrightarrows \mathrm {Li_{n}C} }

Tindak balas keseluruhan mempunyai hadnya yang tersendiri. Mengecas bateri secara berlebihan melampautepukan litium kobalt oksida, membawa kepada penghasilan litium oksida,[17] melalui tidak balas tidak berbalik berikut:

L i + + e − + L i C o O 2 → L i 2 O + C o O {\displaystyle \mathrm {Li^{+}} +\mathrm {e^{-}} +\mathrm {LiCoO_{2}} \rightarrow \mathrm {Li_{2}O} +\mathrm {CoO} }

Mengecas lampau sehingga 5.2 volt membawa kepada sintesis kobalt (IV) oksida, seperti yang dibuktikan oleh pembelauan sinar-x:[18]

L i C o O 2 → L i + + C o O 2 + e − {\displaystyle \mathrm {LiCoO_{2}} \rightarrow \mathrm {Li^{+}} +\mathrm {CoO_{2}} +\mathrm {e^{-}} }

Di dalam bateri ion litium, ion-ion litium diangkut kepada dan daripada katod atau anod dengan mengoksidakan logam peralihan, kobalt (Co), dalam LixCoO2 daripada Co3+ kepada Co4+ semasa mengecas, dan diturunkan daripada Co4+ kepada Co3+ semasa mengecas.

Tenaga sel bersamaan dengan hasil darab voltan dengan cas. Setiap gram litium mewakili pemalar Faraday/6.941 atau 13,901 coulomb. Pada 3 V, ia memberikan 41.7 kJ setiap gram litium, atau 11.6 kWj setiap kg. Ia lebih sedikit daripada haba pembakaran petrol, tetapi tidak mengambil kira bahan-bahan lain yang termasuk di dalam bateri litium dan ia menjadikan bateri litium beberapa kali ganda lebih berat berbanding unit tenaga.

Elektrolit

Voltan sel yand diberi dalam bahagian Elektrokimia adalah lebih besar daripada keupayaan yang mana larutan akueus akan terelektrolisis. Memandangkan sifat logam litium yang sangat reaktif terhadap air, larutan bukan akueus atau aprotik digunakan.

Elektrolit cecair dalam bateri ion litium terdiri daripada garam litium, seperti LiPF6, LiBF4 atau LiClO4 di dalam pelarut organik, seperti ethilena karbonat, dimetil karbonat, dan dietil karbonat. Elektrolit cecair bertindak sebagai pembawa antara katod dan anod semasa arus mengalir melalui litar luaran. Kadar kekonduktivitian lazim bagi elektrolit cecair pada suhu bilik (20 °C (68 °F)) adalah dalam lingkungan 10 mS/cm (1 S/m), meningkat pada kadar lebih kurang 30–40% pada 40 °C (104 °F) dan menurun sedikit pada 0 °C (32 °F)[19]

Pelarut organik mudah terurai pada anod semasa dicas. Walau bagaimanapun, apabila pelarut organik yang bersesuaian digunakan sebagai elektrolit, pelarut tersebut terurai semasa pengecasan awal dan membentuk satu lapisan pepejal dipanggil interfasa elektrolit pepejal (SEI),[20] yang menebat secara elektrikal tetapi masih menyediakan kekonduktivitian ionik. Interfasa tersebut menghalang penguraian elektrolit selepas pengecasan kedua. Misalnya, etilena karbonat terurai pada voltan yang secara relatifnya tinggi, 0.7 V berbanding litium, dan membentuk antara muka yang tumpat dan stabil.[21]

Elektrolit komposit berasaskan POE (poli(oksietilena)) yang dibangunkan oleh Syzdek et al., menyediakan antara muka yang secara relatifnya stabil.[22][23] Ia boleh jadi sama ada pepejal (berat molekul tinggi) dan digunakan pada sel Li-polimer kering, atau cecair (berat molekul rendah) dan digunakan pada sel Li-ion biasa.

Cecair ionik suhu bilik (RTIL) adalah satu lagi pendekatan bagi mengehadkan kebolehbakaran dan kemeruapan elektrolit organik.[24]

Berkaitan